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We have analyzed the codes and their usages in the NERSC allocations in chemical 
science category. This is done mainly based on the ERCAP NERSC allocation data. 
While the MPP hours are based on actually ERCAP award for each account, the time 
spent on each code within an account is estimated based on the user’s estimated partition 
(if the user provided such estimation), or based on an equal partition among the codes 
within an account (if the user did not provide the partition estimation). Everything is 
based on 2007 allocation, before the computer time of Franklin machine is allocated. 
Besides the ERCAP data analysis, we have also conducted a direct user survey via email 
for a few most heavily used codes. We have received responses from 10 users. The user 
survey not only provide us with the code usage for MPP hours, more importantly, it 
provides us with information on how the users use their codes, e.g., on which machine, 
on how many processors, and how long are their simulations? We have the following 
observations based on our analysis.  
 

(1) There are 48 accounts under chemistry category. This is only second to the 
material science category. The total MPP allocation for these 48 accounts is 7.7 
million hours. This is about 12% of the 66.7 MPP hours annually available for the 
whole NERSC facility (not accounting Franklin). The allocation is very tight. The 
majority of the accounts are only awarded less than half of what they requested 
for. There is a tremendous demand for capacity computation at NERSC.  

(2) There are 56 different codes mentioned in the ERCAP request. The total number 
of codes is slightly larger than the total number of (groups) accounts. However, 
since different group might use the same code, thus in average, each group uses 
2.2 codes, and each code is used by 1.8 groups. But two third of the codes are 
used only by one group. The mostly widely used code is Gaussian, used by 11 
groups. This is a commercial quantum chemistry code, with a broad collection of 
functionalities. There is a big overlap of the codes used in chemical science 
category and the material science category. For example, the following popular 
codes are used by both categories: VASP, DL_POLY, PWSCF, NWchem, 
NAMD. There are also common methods used by both categories, most 
noticeable: density functional theory and classical dynamics.  

(3) Surprisingly, the code which uses the most time is S3D, a real space regular grid 
finite difference code for fluid dynamics to simulate combustion. It uses 2.5 
million hours. Partly this is because the INCITE program. S3D does not look like 
traditional chemistry methods. The next mostly used method in terms of computer 
time is the conventional quantum chemical codes using Gaussian basis sets to 
solve Hartree-Fock, MP2, coupled cluster equations. This includes codes like: 



Gaussian, Molpro, GAMESS, NWchem, Q-Chem, etc. This traditional quantum 
chemistry method is closely followed (sometime might be surpassed by) the 
density functional theory (DFT) method. Nowadays, in all the above traditional 
quantum chemistry codes, DFT method is also implemented. DFT method is also 
carried out using the planewave basis (like in the majority of the material science 
codes). This includes: VASP, PWSCF, DACAPO, CPMD, CP2K etc. The next 
method in terms of computer time usage is the quantum Monte Carlo method. 
Unlike the major quantum Monte Carlo codes in material science category, which 
is based on planewave basis, in quantum chemistry, the major codes are based on 
Gaussian or other atomic basis set, like in the code Zori. Another category of 
method which uses a lot of computer time is classical molecular dynamics. This is 
represented by codes like: DL_POLY, WaterMD, LAMMPS and NAMD. Finally 
there are many other codes which are focused on one particle problem or using 
special techniques, for the example: Fouratoms, Fourbody, QDSO, Matrix, etc.  

(4) From the direct user survey, we found that the calculations based the traditional 
quantum mechanical methods (e.g, Gaussian, Q-Chem, Molpro) use small number 
of processors (from serial to 16 processors). One reason is that they want to 
calculate many atomic configurations (e.g. to map out the potential manifold in a 
chemical reaction) for small molecules. Another reason is that those codes do not 
scale well beyond 16 or 32 processors. The quantum Monte Carlo simulations can 
use very large number of processors because they are embarrassingly parallel, 
essentially without communications between different processors. The classical 
molecular dynamics simulation can also employ large number of processors. 
Overall, we see a stronger demand for capacity calculation (e.g., turn around time) 
to capability calculation in the chemical science category.  

 
 
Table.I: This table lists all the codes and their accumulated (from different groups) MPP 
hours and number of groups (accounts) using the code. It also give a brief narrative for 
what does a code do.  

 
Index N-group MPP(KH) Code Name  Narrative  
1 3 2,500 S3D Regular grid fluid dynamics for combustion 
2  3 695 Zori Quantum Monte Carlo, Guassian basis 
3 5 519 MOLPRO High level Q chem. For small system, Gauss. 
4 1 500 DACAPO Planewave DFT, CP, period, ultra-soft,FFT 
5 11 409 GAUSSIAN Gaussian basis Q chem., commercial 
6 6 397 CPMD Planewave DFT 
7 5 372 VASP Planewave DFT, ultra-soft 
8 7 364 GAMESS Gaussian contracted basis, Q-Chem. 
9 1 275 WATERMD Class. MD. For water.  
10 6 260 NWCHEM Q. Chem., many methods, Gaussian, PW 
11 4 250 DL_POLY General Classical MD 
12 1 200 PWSCF Planewave DFT 
13 3 194 Q-CHEM Q Chem. Code with Gaussian contracted basis
14 2 185 LAMMPS Classical MD 



15 1 150 QD_YAEHMPO DFT QM/MM code 
16 1 150 DTMS Eddy simulation for turbulence. 
17 2 125 CP2K MD and Monte Carlo atom, DFT+class. force 
18 1 100 SCHPACK Time dependent Q  dynamics, charge transfer 
19 1 81 FLAPW Augmented PlaneWave DFT 
20 1 72 FOURATOM QM four atom problem with 6-D freedom 
21 1 63 GRMD MD and Monte Carlo atom, DFT+class. Force
22 1 55 FDTD Maxwell’s equation, real space grid, and time 
23 1 52 CFRFS Fluid dynamics, Navier-Stokes equation 
24 1 40 MPQC Massively parallel quantum chemistry 
25 1 40 MATRIX Multi-channel QM, integrel-diff. equation 
26 1 27 NUMEROV Numerov propagation of multi-chann. Wave. 
27 1 27 SEMICLASS Classical wavefunction propagation 
28 1 27 SURFACE 6D Schrodinger equation 
29 1 25 CEO Convert trans. Density matrix to polar. tensor 
30 1 25 MOLDEN Gaussian output visualization 
31 1 23 PES_FIT Large list square fitting program 
32 1 22 H3 Large scale eigen value problem 
33 1 20 RELLIP Laser photon field propagation  
34 1 19 MD In house MD program for oxide/electrolyte 
35 2 10 NAMD Classical MD program 
36 1 10 DALTON Quantum Chemistry code for molecules 
37 1 10 MOLCAS Quantum Chemistry code with geom. Relax.  
38 1 8 UK_R_MATRIX R-matrix Q chem. multichannel, molecules 
39 1 5 FEM_R_MATRI Electron-molecule scattering problem 
40 1 5 QDSO Exciton, Q dynamics, density matr. Propagat. 
41 1 4 DVR_PI Double photoionization of molecule 
42 1 4 FDIFF_ECS 2D Schrodinger’s eq. Sparse linear problem 
43 1 4 HYBRID_BOUD Hybrid basis: Gaussian+spherical, Q-Chem. 
44 1 4 WAVEPROP Atom ionization wavefunc. Time propagat. 
45 1 4 XKIEN CI for atomic double photoionization 
46 1 4 XMOLTWO_D Photoionization of hydrogen molecule 
47 1 3 ALPS Code framework for strongly correlated sysm. 
48 1 3 AMBER Classical force field MD 
49 1 3 CHARMM Classical force field MD 
50 1 3 XRAYSOS Third order response function 
51 1 3 SDP Schrodinger’s Eq. with on semidefinite prog. 
52 1 2 FOURBODY Four body Fermion on harmonic trapping 
53 1 2 MCWF Time propagation of QM wavefunction 
54 1 0 CHEBYSHEV S-matrix calc. Using chebyshev propagator 
55 1 0 ATSP2K LSJ approx. on QM wave. Atomic property 
56 1 0 GRASPVU Atomic structure with Dirac Eq.  



 
   Fig.1, the MPP hours used on different codes in the chemical science category. This 
is a plot of the MPP column versus the index column in Table.1 

 

 
       Fig.2, the number of groups using a particular code. This is a plot of column N-group 
versus the index column in Table.I.  
 
 



In the following, we present the direct user survey results, conducted via email. We have 
survey 4 heavily used codes: Molpro, Gaussian, Zori, and DL_POLY. They represent 
traditional quantum chemistry calculations (Molpro and Gaussian), quantum Monte Carlo 
calculations (Zori) and classical molecular dynamics calculations (DL_POLY). We did 
not survey S3D, because S3D is from an INCITE project (which might change from year 
to year), and it calculates combustion which does not represent typical chemical science 
work load. Our choice of code is not only based on the MPP hours, but also based on the 
number of groups using it. We didn’t survey all the planewave based DFT codes because 
they are traditionally covered by the material science category. We have asked six 
questions, from what are the science they did, to what are the executable code names. 
After this survey, we have also checked some of the NERSC machine blog file records, 
which have information for each executable run during a particular period of time. This 
information includes: the executable name, the number of processors used, and the total 
execution time. We find that our direct user survey results roughly agree with the 
machine blog record. From the survey results, we have the following summary: for the 
DFT/HF/MP2/CCSD codes: Molpro and Gaussian, the parallelization is not very good. 
Most people only use them on one node or even one processor. They run for 12-24 hours. 
For the quantum mechanical code Zori, because it is embarrassingly parallel, it has used 
from 64 processors to 2000 processors, depending on the availability of the processors. It 
can take 48 hours. For the classical molecular dynamics code: DL_POLY, it can run 
efficiently on 1024 processors for million atom systems. But in practice, it runs using 8 to 
64 nodes for 500 hours (MD simulation). From this, we see that there is a demand for 
capacity computation and long time simulation in chemical science category. Even the 
seemly large parallel calculations (the Zori quantum Monte Carlo calculation) are 
actually capacity calculations because there is no communication between different 
processors (only the resulting energies from different processors are statistically averaged 
at the end of the simulation), although there could be a load balance issue when some of 
the walkers in MC algorithm die and new walkers are generated.   
 
 
The survey questions and answers are listed below: 
 

(1) What is the physical problem you are solving ?  (e.g.,  molecular dynamics, 
atomic structure relaxation, reaction path, binding energy calculation, electronic 
structure, many body effects, DFT, MP3, CCSD,HF ...) 
 
Answers:   

(a) Molpro user1 (Bastiaan J. Braams): small system (mostly 7 atoms) electronic 

structure calculations, try to map out the potential functions. Need thousands of 

calculations for different molecular configurations. 

(b) Molpro user2 (Cheuk-Yiu Ng): We do the electronic structure calculations, 

mainly, using the DFT, MP2, CCSD(T) methods.  

(c) Molpro user3 (Andy Simmonett): CCSD(T) for anharmonic vibration.  



(d) Gaussian user1 (Karma Sawyer): Structure relaxation, frequency and 

anharmonicity. Transition metals.   

(e) Gaussian user2 (Ivan Mikhaylov): Transition dipole moments, geometry 

optimization, potential surface.  

(f) Gaussian user3 (YiYang Sun): Binding energy (DFT, HF, MP2, CCSD). 

(g) Zori user1 (Brian Austin): Molecular electronic structure using quantum Monte 

Carlo.  

(h) Zori user2 (Victor Batista): Quantum molecular dynamics, atomic structure 

calculations.  

(i) DL_POLY user1 (Patrick Redmill): Molecular dynamics, the free energy of 

solvantion for nanoparticle.  

(j) DL_POLY user2 (Perla Balbuena): MD simulation to study the dynamics 

properties, segregation on bimetallic nanoparticles, phonon spectra, solvent 

effects.  
 

 
(2) Which NERSC machine are you spending most time running the job?  Do you 

plan to use the new Franklin machine? 
 
Answers:  

(a) Molpro user1 (Bastiaan J. Braams): exclusively on Jacquard (for cheap charging 

rate and turn around time).  

(b) Molpro user2 (Cheuk-Yiu Ng): Jacquard and Bassi. Do plan to use Franklin.  
(c) Molpro user3 (Andy Simmonett): The version on Jacquard has a bug. So use it 

on bassi. Run on a single node (slower on more nodes!).  
(d) Gaussian user1 (Karma Sawyer): Jacquard. No plan for Franklin (don’t know that 

machine).  
(e) Gaussian user2 (Ivan Mikhaylov): Jacquard. No plan for Franklin (maybe).  
(f) Gaussian user3 (YiYang Sun): Bassi. Yes, plan to use Franklin. 
(g) Zori user1 (Brian Austin): Currently mostly on Seaborg. Yes, definitely plan to 

use Franklin.  
(h) Zori user2 (Victor Batista): Using Jacquard, do plan to use Franklin.  
(i) DL_POLY user1 (Patrick Redmill): Seaborg. Don’t know about Franklin.  
(j) DL_POLY user2 (Perla Balbuena): Seaborg.   
 

(3) Most importantly, what are the typical number of processors and typical number 
of hours you are running the job? 
 
Answers:  



(a) Molpro user1 (Bastian J. Braams): 128 CPUs for 12 hours (on low queue). But 

they are actually serial jobs each using one node.  Just many different jobs 

running in parallel.  

(b) Molpro user2 (Cheuk-Yiu Ng): A few nodes on Jacquard for 48 hours, a single 

node on Bassi for 36 hours.  
(c) Molpro user3 (Andy Simmonett): Single node (8 processors) for 8 hours.  
(d) Gaussian user1 (Karma Sawyer): One processor for 5 to 100 hours.  
(e) Gaussian user2 (Ivan Mikhaylov): 2 processors, 20 hours.  
(f) Gaussian user3 (YiYang Sun): 8 processors (one node), 12-36 hours.  
(g) Zori user1 (Brian Austin): 256 to 2025 processors, for the maximum allowed time. 

It is embarrassingly parallel.  
(h) Zori user2 (Victor Batista): 48 processors, for 24-48 hours.  
(i) DL_POLY user1 (Patrick Redmill): 8 processors (1 node), 500 hours per job.  
(j) DL_POLY user2 (Perla Balbuena): 16-64 processors, 8 hours.  

 
(4) Do you know what is the most time consuming part inside the code ? (e.g., what 

algorithm, what library routine, I/O, matrix construction (four body integral?), 
matrix diagonalization, FFT....). 
 
Answers:  

(a) Molpro user1 (Bastian J. Braams): not so clear. On the part of RCCSD(T), 

perhaps on the matrix integral, or solving the coupled cluster equation, or on 

some AMD linear algebra lib. The calculation can also be disk intensive.  

(b) Molpro user2 (Cheuk-Yiu Ng): Heavily on Blas library.  
(c) Molpro user3 (Andy Simmonett): The O(N^7) step in the T correction, perhaps 

using Blas (GotoBLas routines are faster than ATLAS or Intel’s MKL library).  
(d) Gaussian user1 (Karma Sawyer): Do not know.  
(e) Gaussian user2 (Ivan Mikhaylov): 11002.exe. It solves the coupled perturbation 

HF, second order perturbation, etc.  
(f) Gaussian user3 (YiYang Sun):  Four body integral, and the CCSD equations 

(parallelization on this part is poor).  
(g) Zori user1 (Brian Austin): Basis function evaluation, and matrix multiplication in 

the Slater determinate. Also the error evaluation takes time (repeated thousands 

of times).  
(h) Zori user2 (Victor Batista): NAG library. Matrix multiplications, evaluation of 

determinants, computation of numerical integrals.  
(i) DL_POLY user1 (Patrick Redmill): Reciprocal space Ewald summation.  



(j) DL_POLY user2 (Perla Balbuena): Communication cost, the replica data 

arrangement needs a lot of communications.  
 

(5) Given the increasing parallelization of the machine, do you plan to change the 
code? Change the algorithm? Do you think there could be limitation for your 
parallelization? 

 
Answers:  

(a) Molpro user1 (Bastian J. Braams): Parallel Molpro doesn’t work well. So currently 

running the serial version. Not plan to use parallel version.  

(b) Molpro user2 (Cheuk-Yiu Ng): The parallelization on Molpro is limited by the 

speed of interconnect.  
(c) Molpro user3 (Andy Simmonett): Don’t have the source code, not plan to improve 

the code. Parallelization is limited by interconnect.  
(d) Gaussian user1 (Karma Sawyer): No plan (it is a commercial code).  
(e) Gaussian user2 (Ivan Mikhaylov): No plan.  
(f) Gaussian user3 (YiYang Sun):  No plan.  
(g) Zori user1 (Brian Austin): No limit for parallelization, because it is embarrassingly 

parallel, for many statistical runs. Only need to collect the data from different 

runs.  
(h) Zori user2 (Victor Batista): No limit for parallelization, embarrassingly parallel.  
(i) DL_POLY user1 (Patrick Redmill): No plan to change the code. No plan to use 

large number of processors anyway.  
(j) DL_POLY user2 (Perla Balbuena): No plan to change the code. The code is 

already well parallelized.  
 

(6) What is the name of your executable (so we can use automatic ways to get more 
information)? 

 
Answers:  

(a) Molpro user1 (Bastian J. Braams): mpiexec -n 128 $HOME/bin/bjb-mp-scan and 

/usr/common/usg/molpro/2002.6/bin/molpro 

(b) Molpro user2 (Cheuk-Yiu Ng): Molpro 
(c) Molpro user3 (Andy Simmonett): molprop  
(d) Gaussian user1 (Karma Sawyer): Gaussian (?) 
(e) Gaussian user2 (Ivan Mikhaylov): /usr/common/usg/g03/c2/g03/l1002.exe 
(f) Gaussian user3 (YiYang Sun): g03 
(g) Zori user1 (Brian Austin): Zori 
(h) Zori user2 (Victor Batista): prog 



(i) DL_POLY user1 (Patrick Redmill): DLPOLY.X 
(j) DL_POLY user2 (Perla Balbuena): DLPOLY.X 
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